Wednesday, February 1, 2023
HomeNatureA Prox1 enhancer represses haematopoiesis within the lymphatic vasculature

A Prox1 enhancer represses haematopoiesis within the lymphatic vasculature


  • de Laat, W. & Duboule, D. Topology of mammalian developmental enhancers and their regulatory landscapes. Nature 502, 499–506 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Spitz, F. Gene regulation at a distance: from distant enhancers to 3D regulatory ensembles. Semin. Cell Dev. Biol. 57, 57–67 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Rickels, R. & Shilatifard, A. Enhancer logic and mechanics in improvement and illness. Traits Cell Biol. 28, 608–630 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Maurano, M. T. et al. Systematic localization of widespread disease-associated variation in regulatory DNA. Science 337, 1190–1195 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Oliver, G. et al. Prox1, a prospero-related homeobox gene expressed throughout mouse improvement. Mech. Dev. 44, 3–16 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Wigle, J. T., Chowdhury, Ok., Gruss, P. & Oliver, G. Prox1 operate is essential for mouse lens-fibre elongation. Nat. Genet. 21, 318–322 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Dyer, M. A., Livesey, F. J., Cepko, C. L. & Oliver, G. Prox1 operate controls progenitor cell proliferation and horizontal cell genesis within the mammalian retina. Nat. Genet. 34, 53–58 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Sosa-Pineda, B., Wigle, J. T. & Oliver, G. Hepatocyte migration throughout liver improvement requires Prox1. Nat. Genet. 25, 254–255 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Wang, J. et al. Prox1 exercise controls pancreas morphogenesis and participates within the manufacturing of “secondary transition” pancreatic endocrine cells. Dev. Biol. 286, 182–194 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Risebro, C. A. et al. Prox1 maintains muscle construction and progress within the creating coronary heart. Growth 136, 495–505 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Wigle, J. T. & Oliver, G. Prox1 operate is required for the event of the murine lymphatic system. Cell 98, 769–778 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Harvey, N. L. et al. Lymphatic vascular defects promoted by Prox1 haploinsufficiency trigger adult-onset weight problems. Nat. Genet. 37, 1072–1081 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Johnson, N. C. et al. Lymphatic endothelial cell id is reversible and its upkeep requires Prox1 exercise. Genes Dev. 22, 3282–3291 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Francois, M. et al. Sox18 induces improvement of the lymphatic vasculature in mice. Nature 456, 643–647 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Srinivasan, R. S. et al. The nuclear hormone receptor Coup-TFII is required for the initiation and early upkeep of Prox1 expression in lymphatic endothelial cells. Genes Dev. 24, 696–707 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Kazenwadel, J. et al. Loss-of-function germline GATA2 mutations in sufferers with MDS/AML or monoMAC syndrome and first lymphedema reveal a key function for GATA2 within the lymphatic vasculature. Blood 119, 1283–1291 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Ostergaard, P. et al. Mutations in GATA2 trigger main lymphedema related to a predisposition to acute myeloid leukemia (Emberger syndrome). Nat. Genet. 43, 929–931 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Kazenwadel, J. et al. GATA2 is required for lymphatic vessel valve improvement and upkeep. J. Clin. Make investments. 125, 2979–2994 (2015).

    Article 

    Google Scholar
     

  • Petrova, T. V. et al. Faulty valves and irregular mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat. Med. 10, 974–981 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Norrmen, C. et al. FOXC2 controls formation and maturation of lymphatic amassing vessels by means of cooperation with NFATc1. J. Cell Biol. 185, 439–457 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Srinivasan, R. S. & Oliver, G. Prox1 dosage controls the variety of lymphatic endothelial cell progenitors and the formation of the lymphovenous valves. Genes Dev. 25, 2187–2197 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Kothary, R. et al. Inducible expression of an hsp68-lacZ hybrid gene in transgenic mice. Growth 105, 707–714 (1989).

    Article 
    CAS 

    Google Scholar
     

  • Shin, M. et al. Valves are a conserved characteristic of the zebrafish lymphatic system. Dev. Cell 51, 374–386.e5 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Candy, D. T. et al. Lymph circulate regulates amassing lymphatic vessel maturation in vivo. J. Clin. Make investments. 125, 2995–3007 (2015).

    Article 

    Google Scholar
     

  • Sabin, F. R. Preliminary notice on the differentiation of angioblasts and the strategy by which they produce blood-vessels, blood-plasma and pink blood-cells as seen within the dwelling chick. 1917. J. Hematother. Stem Cell Res. 11, 5–7 (2002).

    Article 

    Google Scholar
     

  • de Bruijn, M. F., Speck, N. A., Peeters, M. C. & Dzierzak, E. Definitive hematopoietic stem cells first develop inside the main arterial areas of the mouse embryo. EMBO J. 19, 2465–2474 (2000).

    Article 

    Google Scholar
     

  • Nakano, H. et al. Haemogenic endocardium contributes to transient definitive haematopoiesis. Nat. Commun. 4, 1564 (2013).

    Article 
    ADS 

    Google Scholar
     

  • Gekas, C., Dieterlen-Lievre, F., Orkin, S. H. & Mikkola, H. Ok. The placenta is a distinct segment for hematopoietic stem cells. Dev. Cell 8, 365–375 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Nakano, T., Kodama, H. & Honjo, T. Era of lymphohematopoietic cells from embryonic stem cells in tradition. Science 265, 1098–1101 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • McGrath, Ok. E. et al. Distinct sources of hematopoietic progenitors emerge earlier than HSCs and supply practical blood cells within the mammalian embryo. Cell Rep. 11, 1892–1904 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Gao, L. et al. RUNX1 and the endothelial origin of blood. Exp. Hematol. 68, 2–9 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wigle, J. T. et al. An important function for Prox1 within the induction of the lymphatic endothelial cell phenotype. EMBO J. 21, 1505–1513 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Sabine, A. et al. Mechanotransduction, PROX1, and FOXC2 cooperate to regulate connexin37 and calcineurin throughout lymphatic-valve formation. Dev. Cell 22, 430–445 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Hope, Ok. J. et al. An RNAi display screen identifies Msi2 and Prox1 as having reverse roles within the regulation of hematopoietic stem cell exercise. Cell Stem Cell 7, 101–113 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Okuda, Ok. S. et al. lyve1 expression reveals novel lymphatic vessels and new mechanisms for lymphatic vessel improvement in zebrafish. Growth 139, 2381–2391 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Dunworth W. P. et al. Bone morphogenetic protein 2 signaling negatively modulates lymphatic improvement in vertebrate embryos. Circ. Res. 114, 56–66 (2014).

    Article 
    CAS 

    Google Scholar
     

  • van Impel, A. et al. Divergence of zebrafish and mouse lymphatic cell destiny specification pathways. Growth 141, 1228–1238 (2014).

    Article 

    Google Scholar
     

  • Hogan, B. M. et al. Ccbe1 is required for embryonic lymphangiogenesis and venous sprouting. Nat. Genet. 41, 396–398 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Dubchak, I. et al. Energetic conservation of noncoding sequences revealed by three-way species comparisons. Genome Res. 10, 1304–1306 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Frazer, Ok. A., Pachter, L., Poliakov, A., Rubin, E. M. & Dubchak, I. VISTA: computational instruments for comparative genomics. Nucleic Acids Res. 32, W273–W279 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Brudno, M. et al. LAGAN and multi-LAGAN: environment friendly instruments for large-scale a number of alignment of genomic DNA. Genome Res. 13, 721–731 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Bessa, J. et al. Zebrafish enhancer detection (ZED) vector: a brand new device to facilitate transgenesis and the practical evaluation of cis-regulatory areas in zebrafish. Dev. Dyn. 238, 2409–2417 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Furumoto, T. A. et al. Notochord-dependent expression of MFH1 and PAX1 cooperates to take care of the proliferation of sclerotome cells in the course of the vertebral column improvement. Dev. Biol. 210, 15–29 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Kazenwadel, J., Michael, M. Z. & Harvey, N. L. Prox1 expression is negatively regulated by miR-181 in endothelial cells. Blood 116, 2395–2401 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Naumova, N., Smith, E. M., Zhan, Y. & Dekker, J. Evaluation of long-range chromatin interactions utilizing chromosome conformation seize. Strategies 58, 192–203 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Dobin, A. et al. STAR: ultrafast common RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Thorvaldsdottir, H., Robinson, J. T. & Mesirov, J. P. Integrative Genomics Viewer (IGV): high-performance genomics information visualization and exploration. Transient Bioinform. 14, 178–192 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Tarasov, A., Vilella, A. J., Cuppen, E., Nijman, I. J. & Prins, P. Sambamba: quick processing of NGS alignment codecs. Bioinformatics 31, 2032–2034 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing information. Bioinformatics 31, 166–169 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Robinson, M. D., McCarthy, D. J. & Smyth, G. Ok. edgeR: a Bioconductor bundle for differential expression evaluation of digital gene expression information. Bioinformatics 26, 139–140 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Subramanian, A. et al. Gene set enrichment evaluation: a knowledge-based strategy for deciphering genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Irizarry, R. A. et al. Exploration, normalization, and summaries of excessive density oligonucleotide array probe stage information. Biostatistics 4, 249–264 (2003).

    Article 
    MATH 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments